Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator.

نویسندگان

  • M T Holden
  • S J McGowan
  • B W Bycroft
  • G S Stewart
  • P Williams
  • G P Salmond
چکیده

Few strains of Erwinia carotovora subsp. carotovora (Ecc) make carbapenem antibiotics. Strain GS101 makes the basic carbapenem molecule, 1-carbapen-2-em-3-carboxylic acid (Car). The production of this antibiotic has been shown to be cell density dependent, requiring the accumulation of the small diffusible molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) in the growth medium. When the concentration of this inducer rises above a threshold level, OHHL is proposed to interact with the transcriptional activator of the carbapenem cluster (CarR) and induce carbapenem biosynthesis. The introduction of the GS101 carR gene into an Ecc strain (SCRI 193) which is naturally carbapenem-negative resulted in the production of Car. This suggested that strain SCRI 193 contained functional cryptic carbapenem biosynthetic genes, but lacked a functional carR homologue. The distribution of trans-activatable antibiotic genes was assayed in Erwinia strains from a culture collection and was found to be common in a large proportion of Ecc strains. Significantly, amongst the Ecc strains identified, a larger proportion contained trans-activatable cryptic genes than produced antibiotics constitutively. Southern hybridization of the chromosomal DNA of cryptic Ecc strains confirmed the presence of both the car biosynthetic cluster and the regulatory genes. Identification of homologues of the transcriptional activator carR suggests that the cause of the silencing of the carbapenem biosynthetic cluster in these strains is not the deletion of carR. In an attempt to identify the cause of the silencing in the Ecc strain SCRI 193 the carR homologue from this strain was cloned and sequenced. The SCRI 193 CarR homologue was 94% identical to the GS101 CarR and contained 14 amino acid substitutions. Both homologues could be expressed from their native promoters and ribosome-binding sites using an in vitro prokaryotic transcription and translation assay, and when the SCRI 193 carR homologue was cloned in multicopy plasmids and reintroduced into SCRI 193, antibiotic production was observed. This suggested that the mutation causing the silencing of the biosynthetic cluster in SCRI 193 was leaky and the cryptic Car phenotype could be suppressed by multiple copies of the apparently mutant transcriptional activator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pheromone-independent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens.

Strain ATCC 39006 of Serratia marcescens makes the same carbapenem, (5R)-carbapen-2-em-3-carboxylic acid (Car), as the Erwinia carotovora strain GS101. Unlike E. carotovora, where the onset of production occurs in the late-exponential phase of growth in response to the accumulation of the small diffusible pheromone N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), in S. marcescens carbapenem is pr...

متن کامل

Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator.

Strain GS101 of Erwinia carotovora makes the carbapenem antibiotic, 1-carbapen-2-em-3-carboxylic acid. Mutants defective in antibiotic production can be assigned to two groups, group 1 and group 2. Group 2 mutants are defective in the carl gene encoding a protein responsible for synthesis of the Lux autoinducer N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), which is required to induce carbapene...

متن کامل

N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia.

Quorum sensing via an N-acyl homoserine lactone (HSL) pheromone controls the biosynthesis of a carbapenem antibiotic in Erwinia carotovora. Transcription of the carbapenem biosynthetic genes is dependent on the LuxR-type activator protein, CarR. Equilibrium binding of a range of HSL molecules, which are thought to activate CarR to bind to its DNA target sequence, was examined using fluorescence...

متن کامل

ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein.

N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp. carotovora have shown that AHL deficiency causes the production of high levels of RsmA, an RNA binding protein that functions as a global negative regulator of extrac...

متن کامل

RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC.

RsmC and FlhDC are global regulators controlling extracellular proteins/enzymes, rsmB RNA, motility, and virulence of Erwinia carotovora subsp. carotovora. FlhDC, the master regulator of flagellar genes, controls these traits by positively regulating gacA, fliA, and rsmC and negatively regulating hexA. RsmC, on the other hand, is a negative regulator of extracellular proteins/enzymes, motility,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 144 ( Pt 6)  شماره 

صفحات  -

تاریخ انتشار 1998